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ABSTRACT

The nonsteady flow equations associated an impulsively accelerated
I supersonic vedge were t formed into time-independent system. This

system was then linearized h res to the velocity change. It was

shown that for certain regions f e flow field a velocity potential

could be defined, and a formal s es solution for the potential In these

J regions was found. It was also that the pressure perturbation

satisfies Laplace's equation, n a s bly transformed space, for both

Irotational and irrotational egions. , for the special case of

a s=l3. wedge angle, the c fficients in e velocity potential series

expansion were determin and a closed-form ssion for the pressure

field was obtained.
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I NOMTEUM

Symbol

5 Acoustic speed

CP Specific heat at constant pressure

n Direction normal to a streamline

P Pressure

S t 
Time

U1 U2  Velocity components in X1 , X2 plane

V Initial wedge velocity

AV Increment in wedge velocity

"! Dimensionless perturbation velocity

Wi Reference Mach number

IX , 2X Physical space coordinates

a Wedge angle

SP Shock angle relative to wedge velocity

Sr atio of specific heats

I.
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Symbol

A Dimensionless perturbation pressure

X1
Olt

Density

Dimensionless perturbation density

Velocity potential



1. INTRODUCTION

Current design philosophy in missiles and space craft has generated an

interest in the effects of high longitudinal accelerations. 7he effects

of lateral accelerations have been studied rather extensively (Refs. 1,
2, 3), particularly within the framework of linearized theory. However,

little has been done to determine longitudinal effects.

Dimensional considerations and order of magnitude studies indicate (Ref.

1) that small values of the parameter q I/Y 2 , where q is acceleration, I
is characteristic length, and V is velocity, should correspond to small

acceleration effects. Since boost accelerations of the order of several

hundred g are contemplated for existing designs, and since these high

accelerations will prevail through the low supersonic end of the speed

range, a quantitative measure of the aerodynamic effects is desirable.

This study attempts to provide insight into the flow fields associated

with accelerating bodies by considering the case of a two-dimensional

wedge which undergoes an instantaneous but small velocity change from

one supersonic speed to another.

Following Spitzer (Ref. 4), the nonsteady flow equations for this problem

are transformed into a time-independent system. A linearization of the

resulting equations is effected by ignoring terms of second and hiher

orders in the velocity change, AV, considering the flow field as a per-

turbation fran the steady attached shock wedge-flow case. The resulting

linear system is then examined fran the standpoint of possible solution,

including the derivation of a potential equation for the case of irrota-

tional flow. It is shown that for the general case the pressure is a



solution to Tavlace's eqWtIon in a suitably transformed apae, and solu-

tions for the special case of a aml vedge angle are obtained.

2. WAVE GUIZM

Consider a vedge (Fig. 1) with Initial velocity V vhich is increased

instantaneously at #.0 to V+hV, with

AV <<1
V

We choose a coordinate system (X1, ) which is translating at the final

speed of the vedge vith the origin coincident vith the wedge vertex for
t 0.

The wedge velocity is assumed sufficiently large that a plane shock wave

is attached at the vedge vertex. Since neither the vedge nor the pSs
have a characteristic length, one must suppose that for any time t a
length defined, for example, by Vt will serve to define the scale of the
flow. Tht is, the aplication of an impulsive acceleration to the vedge
generates a wave pattern hich ra ws unmformly with time. 2he character

of this wave pattern becomes clear on further investigtion. Pbr a point
on the body remote from the vertex, the Impulsive acceleration generates
a vave propating in a direction normal to the vedge surface which in-
duces a nomal velocity AV sina :in the gas. For AV sall, the pro-aga-
tion speed, relative to the Ss, of this vave will be , , the acoustic
velocity behind the initial shock wave. Simultaneously, a cylindrical
vave vill originte at the vertex at t-0 . This wave, for small AV,
ill propagate radially from its center at speed e , and its center will

convect along the wedge surface at the speed of the Sas. A new shook
wave will be formed at the vertex, coresponding to steady-state fla at
the new vedge velocity. 7he vave geoetry for a particular tIme Is shwn
in Fig. 2. Th dashed portion BC of the shock falls Inside the cirle 4.-
fining the cylindrical wave; its shape is not known. If a Is asueI

I
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sufficiently small, then 08 and CC' will be tangent to the circle.* The

geometry shown is for a relatively low Mach nmber so that DD' is tangent

to the circle. For sufficiently high Mach nubers, C and D coalesce and

this point moves down the right hand side of the circle toward E as the

Mach nunber increases.

3. TRANFORMATION OF TE EQUATIONS

The momentum, continuity, and energy equations can be expressed for this

problem as

_ au a _ p. .
at Cx a 8x I

a.L.+ (PUP .0 (2)
at a x I

D (.! U U()
Dt Y-1 2 at

where it is assumed that the fluid is a perfect gas.

he previous discussion suggests the transformation

a1 t

If the flow variables are functions only of B Eqs. (1), (2), and (3)
becane

It was pointed out to the author by Professor Nicholas Rott that the
angle B F C is proportional to a K for small a, placing a more severe
restriction on this angle than would at first seem necessary.

4
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(U 1  -L.e +.A L U1f aP- 7

ae( i ) ° i 1 . (6)

a j p 2 p ae

We now define

U i - Wl (8)
al

P - P1

" -
(10)

P1

where is the (constant) vector Mach number behind the initial shock

wave and Pi, Pi are the pressure and density, respectively, behind the

initial shock.

In the It, '2 coordinate system the cylindrical wave ABODE maps into half

of the unit circle with F mapping into the origin. 9he waves and the

wedge are stationary in this space (Fig. 3).
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We formally assue that the restriction of small AV/V implies small values

for Y, a, and)k. Inserting Eqs. (8), (9), (i0), and (11) into Eqs. (5),

(6), and (7) and retaining only lowest order terms provides

_ - .± .0 (1)~j - 1I

N 1 a = .o (3)

Y-1), _j ,- wq Ni W (-1) 0 - (14)
1,a q-, j-, j ,I .

eqJ

Eqs. (12) and (13) my be substituted into (14) to provide

S',i "0 - . .o (15)

We consider Eqs. (12), (13), and (15) as our system, noting that Eqs. (12)

and (15) may be considered independently of (13).

q2

D'

0

FIGURE 3!r

I
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4. SOLU1ION OF M(E EQUATIONS

A number of manipulations can be performed on this system. It is shown

in Ref. 4 that the characteristic directions for the systems are real out-

side the unit circle and imaginary inside. Since the solution outside

the unit circle can be obtained from ordinary shock wave considerations,

knowledge of the characteristic system does not seem to have much real

significance except to define formally the unit circle as the boundary

between the elliptic and hyperbolic regions of the plane. Examining Ig.

3, we see that the "streamlines" through points B and C must terminate at

F, defining a triangular shaped region outside of which the fluid parti-

cles are acted upon by a plane shock only. The flow in regions ABFand

in FC E will thus be irrotational. If the interaction BC is a "smooth"

one, then the entropy gradient du/dn and, hence, by Crocco's Theorem, the

vorticity, will be of order A V in BCF.

If a velocity potential is postulated

-i - - 0 (16)

it can be shown that

2 2C2 + (q2 11)L .0
- " q + 2 218 2 (17)

Solutions to this equation, using separation of variables, can be expres-

sed as

[An f [i,(nrv) + en ,-r 1Ca n nsn (18)

7
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where r=, 2 + it2 ) (19)

o ,n -1( 112) (20)

and f(n, ) is expressed in terms of the hypergecmetric function

n n-I n+I ;r2)

f(. r) r" 4 2 (21)

The presence of an infinity in f ( -n, r at r - 0 suggests that

B a0 (22)

We may also choose, with no loss in generality,

A, -(23)

giving

. ' f (C, an ne+ D, in n ) (24.)

These solutions apply in regions ABF and FCE.

5. TE P3SSUM EQtMfCf

With same manipulation, the velocities may be eliminated fram Eqs. (12)

and (15), providing

8



N,,+*1) a + 2, ,,2 a 2A + (, 21) a2 A +2,q, O-..U. +2,q2 a...k o(5
*h 2 ___ _2 2+a 2 2  a, a2 . 0 (25)

or, in polar coordinates,

,2 (r2 +1) a +,(2r )(
=a r a 02

The transformation

Y(27)

transforms Eq. (26) into Laplace's equation

2 +~ Ir !, + 0o
9 2 .2 (28)

with general solution

. f(Tre) + 9 (79..0) (29)

6. BOINIDARY CONDITIOZE

The flow properties in the region exterior to the unit circle are known,

so that the values of pressure and velocity perturbations on segments AB,

CD, DE, as well as the velocity and normal derivative of the pressure at

the wedge surface are known.

I
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On AS

-- AV sin asin 02 -

YJ t*21

Y2 sVina P tn2 2  (30)
cotn (02 - a

1%WP - PI . X2

YP'

where 02 and P2 awe, respectively, the wave angle for and the pressure

behind the oblique shock Os.

On CD

vie a 0 (31)

On DE

p.AV SIn 2a

Y'2 AV$in aCos a (32)

x LV. sin d

On A

(33)

On segment B C a difficulty arises in that the details of the shock inter-

action are not known. It is surmised that the shock segment BC is a smooth

I ?0



curve, matching slopes with OBat B and CC" at C. A numerical scheme in

hich the shock shape is determined simultaneously with the solution of

the flow equations, in the manner of current methods of solving the blunt

body problem, would seem to be appropriate.

If the wedge angle 1 is assumed small, shocks OB and CC' will, in the

limit, be tangent to the circle, giving the geumetry of Fig. 4. In this

case the interaction occurs "outside" the unit circle and the conditions

on BC are a simple superpostion of the conditions on AC and on BD. Tat

is, AX $=3 X2 = 1/y and VijV2I onCB.

DD

- 1FGUJRE 4

1E. T PESSURE DISTRIBUTION

JThe solution for A may now be written

XAmA 1  RI' A~ in [log1 -1k) +p

1 (34) l

II
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where

k V- I Zr., ki8 . 0 ke - 6)

2 Z k*c (35)

ZB kel(s-a) C

This solution applies inside the circle ADE. fg. 5 shows a plot of A

versus distance along wedge surface for different initial Mach numbers.

me 19 0.02

i~M M,. 1.93

A '
-0 -0.8 -0.6 -0.4 -0.2 F 0:2 0:4 0:6 0:8 I.6E

1 ~-0.02 5

-~ ~ ~ ~ ~ - 50oo FPS o o,,o
me- 1.25 .-0.02 .-P5

,- 1000 FPS

I: -0.03 y .

RGURE 5

T
8. THE VELOCITY POTT

For the small angle case, the entropy gradient is of the order a2 &V and

can be ignored. The coefficients of Eq. (24) can then be formally evalu-

ated. We define

!12



#,-- a

and write

. ! f(nr) (Cn cos n ,, + Dn sin n ,) (36)0

Since by Eq. (33) . -0 at 0 and &-w ,we require that 6 be

an even function of , giving

Dn. =0

Eqs. (30), (31), and (32) can be expressed in terms of * as

AV sinacoo,/, 0<,0,<1r2
" r Ir= ,1 (38)

S21 cos + Y22 sin ,< < W

where only lbwest order terms have been retained.

Formally

ar - I " ; L (n, 1) C. coo n,

and since (Ref. 5)

F'(.t, n,-.I2;n+l; 1 - 1  ;n+1; 1

13



we have

ar- (1,)c o C n, (39)

From Eq. (39), using standard methods,

Cn" -1 2- AV sin 2 sin (n+l)+ sin(n-) ] + -

wn (2- 4.2 n__ __ _ n 1

(40)
+Y22[ 2(-U" cog (n+,) 0 cos (n-1) O
W -2-1) n  1 n-

9. CONCLUSION

The pressure distribution and the potential function have been determined

for the case of very small wedge angle. The solution for larger wedge

angles could not be completely obtained owing to inability to specify the

boundary values in the shock interaction region. However, the pressures

to either side of the unit cirble are constant and can be determined fron

. ordinary shock considerations. It is felt that the nature of the pressure

variation on the wedge surf.ce inside of the unit circle is not markedly

Idifferent for large angles from that given by the small angle solution.
I The transient foredrag of a simple wedge wing can be estimated roughly by

noting that for the extreme case of M. = 1.25 the pressure coefficient to

1the right of E is approximately six percent greater than that to the left
of A. The mean value of the transient foredrag coefficient would then be

Iroughly half this value, that is, three percent of the final steady state

foredrag coefficient. For the higher Mach nunbers this value decreases,

bec1ming slightly negative for M. = 1.93.

1
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